M(Salen)-derived Nitrogen-doped M/C (M = Fe, Co, Ni) Porous Nanocomposites for Electrocatalytic Oxygen Reduction

نویسندگان

  • Jing Du
  • Fangyi Cheng
  • Shiwen Wang
  • Tianran Zhang
  • Jun Chen
چکیده

Carbonaceous materials containing non-precious metal and/or doped nitrogen have attracted tremendous attention in the field of electrochemical energy storage and conversion. Herein, we report the synthesis and electrochemical properties of a new family of nitrogen-doped metal/carbon (M/N/C, M = Fe, Co, Ni) nanocomposites. The M/N/C nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped carbon matrix, have been synthesized by simply pyrolyzing M(salen) (salen = N,N'-bis(salicylidene)-ethylenediamine) complex precursors. The prepared Co/N/C and Fe/N/C exhibit remarkable electrocatalytic activity (with onset potential of 0.96 V for Fe/N/C and half-wave potential of 0.80 V for Co/N/C) and high stability for the oxygen reduction reaction (ORR). The superior performance of the nanocomposites is attributed to their bimodal-pore structure, high surface area, as well as uniform distribution of high-density nitrogen and metal active sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Size-controlled large-diameter and few-walled carbon nanotube catalysts for oxygen reduction.

We demonstrate a new strategy for tuning the size of large-diameter and few-walled nitrogen-doped carbon nanotubes (N-CNTs) from 50 to 150 nm by varying the transition metal (TM = Fe, Co, Ni or Mn) used to catalyze graphitization of dicyandiamide. Fe yielded the largest tubes, followed by Co and Ni, while Mn produced a clot-like carbon morphology. We show that morphology is correlated with elec...

متن کامل

Enhanced Electrocatalytic Activity of Pt-M (M= Co, Fe) Chitosan Supported Catalysts for Ethanol Electrooxidation in Fuel Cells

Here, metal nanoparticles were synthesized by chemical reduction of the corresponding metal salts in the presence of chitosan polymer. Binary and ternary metallic-chitosan Pt-Fe-CH, Pt-Co-CH and Pt-Fe-Co-CH nanocomposites were prepared. Transmission electron microscopy images and UV–Vis spectra of the nanocomposites confirmed the presence of the metal nanoparticles. The electrocatalytic activit...

متن کامل

Core−Shell Nanocomposites Based on Gold Nanoparticle@Zinc− Iron-Embedded Porous Carbons Derived from Metal−Organic Frameworks as Efficient Dual Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions

Core−shell nanocomposites based on Au nanoparticle@zinc−ironembedded porous carbons (Au@Zn−Fe−C) derived from metal−organic frameworks were prepared as bifunctional electrocatalysts for both oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). A single Au nanoparticle of 50−100 nm in diameter was encapsulated within a porous carbon shell embedded with Zn−Fe compounds. The resu...

متن کامل

From cage-in-cage MOF to N-doped and Co-nanoparticle-embedded carbon for oxygen reduction reaction.

By one-step pyrolysis of a unique "cage-in-cage" cobalt metal-organic framework, nitrogen-doped carbon cubes embedded with numerous metallic Co nanoparticles were obtained. A considerable amount of Co particles was encapsulated in thin carbon shells and formed the core-shell-like Co@C structure. With about 60 wt% Co particles in the prepared sample, the nanocomposites of Co nanoparticles and ni...

متن کامل

Metal–Organic‐Framework‐Derived Dual Metal‐ and Nitrogen‐Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells

A new class of dual metal and N doped carbon catalysts with well-defined porous structure derived from metal-organic frameworks (MOFs) has been developed as a high-performance electrocatalyst for oxygen reduction reaction (ORR). Furthermore, the microbial fuel cell (MFC) device based on the as-prepared Ni/Co and N codoped carbon as air cathode catalyst achieves a maximum power density of 4335.6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014